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Abstract. The coupled higher-order nonlinear Sétinger equations are generalized toMn
coupled system which governs the propagatioN dields in a fibre with all the higher-order effects

like third-order dispersion, Kerr dispersion and stimulated Raman scattering. The explicit Lax pair
is constructed and the soliton solutions are obtained using the Darbaakidd transformation.
Finally, the Hirota bilinear form for thé/-coupled system equations is also presented.

It has been realized that the concept of solitons in optical communication has grown in stature
and attained a status such that all future communications will be of soliton-type. In optical
pulse propagation through a nonlinear fibre, it has been proved that soliton-type propagation is
possible by means of a counterbalance of the major constraints in the optical fibre, namely, the
group velocity dispersion (GVD) and the self-phase modulation (SPM). SPM is the dominant
nonlinear effect in silica fibres due to a Kerr effect arising out of the anharmonic motion of
bounded electrons. This type of soliton pulse propagation is governed by the well known
nonlinear Schidinger (NLS) equation derived from the basic wave propagation equations
by Hasegawa and Tappert [1]. After the invention of high-intensity lasers, their results were
confirmed experimentally by Mollenauet al [2].

For transmitting ultrashort pulses (USPs), it is necessary to consider higher-order effects
such as third-order dispersion (TOD), Kerr dispersion and stimulated Raman scattering
(SRS) since USPs suffer from these effects, as experimentally reported by Mitschke and
Mollenauer [3]. The Kerr dispersion, also known as self-steepening, is caused by the intensity
dependence of the group velocity which results inasymmetrical spectral broadening of the pulse
since the peak of the pulse travels slower than the wings. The SRS causes a self-frequency
shift which is a self-induced red shift in the pulse spectrum as the low-frequency components
of the pulse obtain Raman gain at the expense of the high-frequency components. With the
inclusion of all these effects, Kodama and Hasegawa [4] have proposed that the dynamics of
femtosecond pulse propagation be governed by the higher-order NLS (HNLS) equation. The
HNLS equation allows soliton-type propagation only for certain choices of parameters [5].

Wavelength division multiplexing (WDM) using solitons is necessary to propagate more
channels simultaneously and also to increase the transmission capacity of the communication
system where at least two optical fields are to be transmitted and the system is governed by
a coupled NLS equation [6]. A coupled NLS equation was proposed by Manakov, derived
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by taking into account the fact that the total field comprises two fields with left and right
polarizations [7]. The coupled equations take the form

iq1z + ciqarr + (@lqa)? + Blg2l*)g1 = 0 1)
igaz + c2q2rr + (Blarl? + v 1g21)q2 = 0.

The above equations are integrable only for the following parametric choices =i},
a =B =y andcy = —co, « = B = y. In a similar manner, for USPs, coupled HNLS
(CHNLS) equations have been proposed by us and we have shown that the system is integrable
for a particular choice of parameters using the Pamkmgularity structure analysis [8]. The
general forms of CHNLS equations are

iq1z + e1qirr +o2(lq1l® + 19219 g1 + ielasqirrr + aallgr® + |21 qar
tesqi(lql” + 1g21%)7] = 0 2
ig2z + o1gart +a2(lq1l® + |g21%)q2 + ig[aagarrr + aa(lqal? + 1q2|*) gor @
+asgz(q1l® +1g21%)7] = 0.

As such, the above equations are not integrable but, by using Raienhalysis, we found
that the above systemis integrable for certain parametric conditions (discussed in equation (3)).
If some restrictions are imposed on the parametric values, one can obtain several integrable,
soliton-possessing NLS-type equationse (& 0, NLS; (i) a3 : a4 : a5 = 0 : 1 : 1,derivative
NLS [9]; (iii) a3 : a4 : a5 =0:1:0,derivative mixed NLS [9]; (iV)xz : g4 i 5 =1:6: 0,
the Hirota equation [10] and (W3 : @4 : a5 = 1 : 6 : 3, theSasa—Satsuma case [11].
Hence, with the inclusion of all the higher-order terms, the CHNLS equations are found to be
integrable only for the following choice of parametess: = %; ar =103 =1, 04 =6 and
as = 3. If we put the conditionj, = 0, equation (2) reduces to the completely integrable
HNLS equation. With the inclusion of TOD and Kerr dispersion, Tasgal and Potasek [12]
have studied the soliton aspects. In a recent paper, as in the case of a CNLS system, the
next hierarchy of CHNLS equations have been reported for the first time [13]. In our earlier
work, we have shown that the system of two-coupled HNLS equations can be generalized to
the integrable form ofV-coupled equations and proposed the possibility of the existence of
solitons in them [14]. As an extension of that work, we establish the complete integrability
properties of the system @f-coupled HNLS equations given in its integrable form as

n=1 n=1

N N N
iq1z + %QZLTT *tq1 Z |gal? + i‘9|:q1TTT +6q17 Z |gnl? + 3¢11< Z |on|2> :| =0
n=1 T
N

N N
g2z + 3qarr +q2 ) 1gal” + ig|:Q2TTT +6q2r Y Igal” + 3Q2< |qn|2> ] =0 @)
= n=1 T

n=1 n=1

N N N
ignz + 3qnTT +qN Z |qal? + i8|:CINTTT +6gNT Z |gal? + 3‘1N<Z |Qn|2> i| =0.
T

n=1 n=1 n=1
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To analyse equation (3), it is rather convenient to introduce variable transformations:
—i 4

Eq(t,2) = T,2)expy — |\ T — —

1(t,2) = q1(T, Z) p{Ge ( 188)}

VA

Ex(t,2) = q2T, Z) exp{g—gI <T — E)}

(4)
z

Enx(t,2) =qnN(T, Z2) exp{;—gl (T — E)}

=7 t=T z
z= = %
By making use of the transformations, equation (3) is reduced-tmupled complex
modified KdV-type equations of the form

N N
Exz +8[Elm +6E1r y  |E, >+ 3E1<Z |En|2) } =0
T

n=1 n=1
N N
Esz7 + 8|:E2TTT +6Eor Z |E, |+ 3E2<Z |En|2) ] =0
n=1 n=1 T (5)

N N
Eyz +5|:ENTTT +6ENT Z |E, |? + 3EN<Z |En|2) ] =0.
T

n=1 n=1
In order to construct the explicit Lax pair for equation (5), we generalize the22
Ablowitz—Kaup—Newell-Segur (AKNS) method [15] to(AN + 1) x (2N + 1) eigenvalue
problem. The linear eigenvalue problem is written as

v, =UW
v — vy } W=(W W W3 ... Wy Waye)' (6)
where
—i» Ey Ef --- Ey E}
~E; i» 0 -~ 0 0
-E; O ix -~ O 0
U= ; S . (1)
—-E5 O 0O - ix 0
—-Ey O o .- 0 ix
Vi1 V1o Vi3 e Vienw) Vien+1
Va1 Voo Va3 e Voony Voan+1)
Va1 Va2 Vaz e Vaew) Vaan+1)
V= . ) . ) . ) . 8
Viony1 Vony2 Vonys - Vemew Vionyen+y
Von+nr Vonv+nz Venv+nz - Venvspeny Vewn+newn+y
In general, the matri¥ is written as
3
Vij = Vi, (9)
n=0

The integrability condition for the matricés andV is
U, -V,+UV -VU=0. (20)
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Using the integrability condition and choosing the appropriate constants of integratidn, the
matrix is obtained as

-2N 0 0 --- 0 O 0 E Ef .- Ey E}
0O 1 0-.---00 -E; 0 0O .- 0 O
K 0O 01 ..-00 -E; 0 O -« 0 ©
_ B . R EVPIT .
2N +1 : Do : : : : : : :
0O 0O0..-10 -E;} 0 O -~ 0 O
0O 00 ..-01 —-Ey O O --- 0 O
-2A —Ey —Ei - —Ey; —E,
—E;,  |E2)* (ED?® - EjEy EjE}
_ —-Ey  E? |E1* --- EiEy E(E}
+2igd . .
—E%, EiEy EiEy --- |Ey[* (E})?
—Ey, E:Ey EjEy -+ E3 |EyP?

0 4AE; + Eyy 4AE;+E}, -+ AAEN+Eyy 4AE% + EY,,
—4AE} — E}, Ei1E}, —EjEy 0 -+ ENE} —EfEn, EYE} — EfEY,
—4AEq — Eqyy 0 EfEy — E:E}, .-+ EyNEy—Ei1Ey,  EjEy — E71EY,

—& .
—4AEY, — EY,, Ei1E%, —EyEy E(EY, —EYEL -+ ENEY, —ENEn, 0
—4AENy — Eny E1En: — ENEy EIEN, — ENEZ 0 E;,EN, — ENE;,[
(11)

whereA = Y | |E, |2

Hence, the complete integrability of equation (5) and thereby equation (3) is confirmed
by the Lax pair given above. From this Lax pair, the soliton solutions can be generated
using various analytical methods. Here, we use the DarboaskiBnd transformation and
the explicit soliton solutions are generated.

To derive the Bicklund transformation of equation (5), we have to write down equation (6)
in the coupled Riccati form. Introducing new variables (or pseudopotentials [16])

\I’]_ ‘112 \113 \IIZN
= I, = ;= co.Toy = (12)
Won+1 Won+1 Won+1 Won+1
equation (5) yields
N-1
[y = —2iATy+ Y (E;Tg; + EiTgj41) + Ey(Day + ) + E}, (133)
j=1
—IES+ Ty E for evenN
Djp=1{ 7 2 (130)
—FlEj + F1F2j+1EN for oddN.
Now, let us seek a transformation of variables— I';, ', — I';, I's — I'g, ..., Toy —

I'ove A — A, E1 — Ej, E; - E, E3 - Ej, ..., Ey — E} which keeps the form
of equations (13) invariant. The simplest transformation can be tried by séting I'y,
I, =T5';="T4,..., I, =Ty, 2 = 1% looking for E{, E; andE), in the form
2i(h — ATy,
E;—E;= ( 213 e
1+352 10,02
2i(h — AT
1+, 02

where j=123,...,N—1 (14

Ey—Ey = (14b)
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Equations (14) define thed@klund transformation for equation (5). The primed quantities
correspond tv-soliton solutions and the unprimed quantities correspond tathel()-soliton
solutions. This means that, on the basis of a known solution (seed solution) to equation (5),
we are able to find pseudopotentials (12) and, making use of (14), we can then find the desired
potentialsE, and E, i.e. the new solutions of equation (5).

For instance, the trivial solution of equation (8) = E, = --- = Ey = 0 corresponds
to the following pseudopotentials (with= i3):

I'1(0) = c1exp(2Bt — 8¢B%2)

[2(0) = c2
I'3(0) = c3 (15)
2oy (0) = con
wherecy, ¢, c3, . . ., coy are arbitrary integration constants. Hence, we can find new solutions
of equation (5) from (14) which are generated by the trivial one:
E;(1) = 282 sechi2pr — 8¢p%)  where j=1,23...,N—1 (169)
51
1
En(1) = 28~ sechi2ft — 8¢p%7). (160)
C

1
Expressions (16) give the one-soliton solutions of equation (5). In a similar way, Dgi@g
I'2(0), I'3(0), ..., 'on(0), E1(2), E2(1), E3(D), ..., Ey(1), One can generate theé-soliton
solutions of equation (5) in a recursive manner. Using equation (4), the one-soliton solution
of equation (3) is found to be

C2i+1 VA i V4
qj(l) =28 C{{ SeCh|:2ﬂ <T — E) — 88,332i| exp[g (T — @)} (17a)
1 VA i VA
1) =28=—sech| 28 (T — =) — 8> — (- = 17b
gn(D) ﬂc; sec [ ﬁ( 123> cp z} eXp[GE( 188)] (170)
wherej = 1,2,3,..., N — 1. The intensity profile of the one-soliton solution given by

equation (17) is shown in figure 1. From the above soliton solution, the information about the
soliton pulse, i.e. the pulse width, pulse intensity etc, can be obtained. By constructing the
higher-order soliton solutions, one can also gain some idea about the interaction of solitons
with the inclusion of higher-order linear and nonlinear effects. Work is in progress in this
direction.

Now, for the sake of completeness, we proceed further to construct the Hirota bilinear
form for equation (3). For this, we introduce the following transformation [17]:

G
== 18
q="7 (18)
whereG is a complex function and is a real function. Using the above transformation, we

obtain the Hirota bilinear form as

(D, —i/2D? —¢D3G,; - F =0 where j=1,2,3,...,N (19)
N

DtZF.F=2<Z|Gj|2) (20)
j=1

D,G;-G; =0 where j=1,23,...,N (21)

D,G;-G=0 where j=1,23 ...,N k=1,23,....N j#k (22)
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Figure 1. Intensity profile of the one-soliton solution fgr= 0.01 ande = 0.0015.

DG, -Gi=0 where j=1,23...,N k=1,23,....N j#k (23)
D,G; -Gy =0 where j=1,2,3,...,N k=1,23,...,N j#k. (24)

The bilinear operator is defined by
d a\" /o 3\
DtmD;l = <E — W) (a - W) G(X, t)F(x', t/)
From the bilinear form, it should be noted that equations (21)—(24) give severe constraint to
the constructed form @, F andG*. Using the standard expansion method, one can construct
the soliton solutions in a systematic manner.

Thus, in this work, we have generalized the 2 AKNS method to th€2N +1) x (2N +1)
eigenvalue problem oN-coupled HNLS equations. We have constructed the explicit Lax
pair and the exact soliton solutions using Darbou&elBund transformations. We have also
constructed the Hirota bilinear form for the system. Hence, with these results, we have proved
that theN-coupled CHNLS equations which describe the wave propagatiavi néimbers
of fields in a fibre system with all the higher-order effects such as TOD, Kerr dispersion and
stimulated Raman effect, will allow soliton-type pulse propagation. From the soliton solutions,
one can obtain the information about the shape, width and intensity of the propagating pulse.

(25)

x'=x,t'=t
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